депрессия, пофигизм и наплевательское отношение к собственной жизни
БиблиотекаИзабель Мансуй с коллегами мучила мышей. А именно: неожиданно отнимала мышку-мать у малолетних мышат и то в холодную воду ее окунет, то засунет в тесную коробку. Специально делала это не по расписанию, чтобы мышь не могла привыкнуть и утешить детишек перед очередным сеансом пыток.
Естественно, в таких мышиных семьях складывалась неприятная, нервная обстановка. Это сказывалось на мышатах: они вырастали депрессивные, недооценивали риск, не берегли себя. Но самое забавное, что мышата-мальчики передавали такой дурной характер своим потомкам в следующем поколении.
Легко сказать: «передавали характер». Но Изабель с друзьями выяснила, что именно они передавали. Оказалось, в сперме у мышат из плохих семей присутствовали пять специфических микроРНК. Одна из них, miR-375, точно связана со стрессом, остальные — возможно, тоже.
краткая суть в том, что она влияет на работу генов: получив в наследство от папы такую микроРНК, вы уже не будете прежним.
То, что эти микроРНК наследуются, установлено точно. То, что вместе с ними наследуются указанные черты личности, нуждалось в дополнительной проверке: для этого сперму застрессованных самцов впрыснули совсем уж незнакомым самкам, дабы исключить все возможности социальной передачи. Спермы оказалось достаточно.
Известно и то, откуда эти микроРНК могут браться. В созревающих сперматозоидах совершено точно присутствуют рецепторы гормонов стресса (глюкокортикоидов). Именно через них маленькие головастики узнают о том, какая у папы тяжелая жизнь (в случае наших мышат — «тяжелое детство»). И передают это знание потомкам.
депрессия, пофигизм и наплевательское отношение к собственной жизни наследовали не только дети, но и внуки, и правнуки тех мышат. Это при том, что микроРНК следующим поколениям уже не передавались. Значит, есть и еще что-то, кроме микроРНК, передающее потомкам генетическую память.Article preview
Implication of sperm RNAs in transgenerational inheritance of the effects of early trauma in mice
- ,
- ,
- ,
- ,
- ,
- ,
- ,
- &
- Nature Neuroscience
- (2014)
- doi:10.1038/nn.3695
- Received
- 19 January 2014
- Accepted
- 11 March 2014
- Published online
- 13 April 2014
Article tools
Small non-coding RNAs (sncRNAs) are potential vectors at the interface between genes and environment. We found that traumatic stress in early life altered mouse microRNA (miRNA) expression, and behavioral and metabolic responses in the progeny. Injection of sperm RNAs from traumatized males into fertilized wild-type oocytes reproduced the behavioral and metabolic alterations in the resulting offspring.
At a glance
Read the full article
Subscribe to Nature Neuroscience for full access: $225
Subscribe-
*printing and sharing restrictions apply
ReadCube Access*

-
Purchase article full text and PDF: $32
Already a subscriber? now or for online access.
Additional access options:
- Accession codes•
- References•
- •
Primary accessions
Gene Expression Omnibus
- Accession codes•
- References•
- •
- Manolio, T.A. et al. Nature 461, 747–753 (2009).
- Qureshi, I.A. & Mehler, M.F. Nat. Rev. Neurosci. 13, 528–541 (2012).
- Abe, M. & Bonini, N.M. Trends Cell Biol. 23, 30–36 (2013).
- Rottiers, V. & Naar, A.M. Nat. Rev. Mol. Cell Biol. 13, 239–250 (2012).
- Burton, N.O., Burkhart, K.B. & Kennedy, S. Proc. Natl. Acad. Sci. USA 108, 19683–19688 (2011).
- Gu, S.G. et al. Nat. Genet. 44, 157–164 (2012).
- Liu, W.M. et al. Proc. Natl. Acad. Sci. USA 109, 490–494 (2012).
- Rassoulzadegan, M. et al. Nature 441, 469–474 (2006).
- Kawano, M., Kawaji, H., Grandjean, V., Kiani, J. & Rassoulzadegan, M. PLoS ONE 7, e44542 (2012).
- Krawetz, S.A. et al. Hum. Reprod. 26, 3401–3412 (2011).
- Pena, F.J. et al. Reprod. Domest. Anim. 44, 345–349 (2009).
- Franklin, T.B., Linder, N., Russig, H., Thony, B. & Mansuy, I.M. PLoS ONE 6, e21842 (2011).
- Franklin, T.B. et al. Biol. Psychiatry 68, 408–415 (2010).
- Weiss, I.C., Franklin, T.B., Vizi, S. & Mansuy, I.M. Front. Behav. Neurosci. 5, 3 (2011).
- Rose, A.J. & Herzig, S. Mol. Cell. Endocrinol. 380, 65–78 (2013).
- Drake, A.J. & Seckl, J.R. Pediatr. Endocrinol. Rev. 9, 566–578 (2011).
- Sharma, A. Prog. Biophys. Mol. Biol. 113, 439–446 (2013).
- El Ouaamari, A. et al. Diabetes 57, 2708–2717 (2008).
- Zhang, N. et al. J. Biol. Chem. 288, 10361–10373 (2013).
- Maguschak, K.A. & Ressler, K.J. J. Neuroimmune Pharmacol. 7, 763–773 (2012).
- Tweedie-Cullen, R.Y., Reck, J.M. & Mansuy, I.M. J. Proteome Res. 8, 4966–4982 (2009).
- Maragkakis, M. et al. BMC Bioinformatics 10, 295 (2009).
- Hogan, B.C.F. & Lacy, L. Manipulating the Mouse Embryo: A Laboratory Manual, 2nd edn. (Cold Spring Harbor Laboratory, 1994).
- Koshibu, K. et al. Protein phosphatase 1 regulates the histone code for long-term memory. J. Neurosci. 29, 13079–13089 (2009).
- Sai Lakshmi, S. & Agrawal, S. Nucleic Acids Res. 36, D173–D177 (2008).
- Li, H. & Durbin, R. Bioinformatics 25, 1754–1760 (2009).
- Johnson, G.D. et al. Mol. Hum. Reprod. 17, 721–726 (2011).
- Kozomara, A. & Griffiths-Jones, S. Nucleic Acids Res. 39, D152–D157 (2011).
- Anders, S. & Huber, W. Genome Biol. 11, R106 (2010).
- Betel, D., Sheridan, R., Marks, D.S. & Sander, C. PLoS Comput. Biol. 3, e222 (2007).
- Langmead, B., Trapnell, C., Pop, M. & Salzberg, S.L. Genome Biol. 10, R25 (2009).
- Accession codes•
- •
- Author information•
Affiliations
-
Brain Research Institute, Neuroscience Center Zürich, University of Zürich and Swiss Federal Institute of Technology, Zürich, Switzerland.
- Katharina Gapp,
- Ali Jawaid,
- Johannes Bohacek &
- Isabelle M Mansuy
-
Gurdon Institute, Cambridge, UK.
- Peter Sarkies &
- Eric Miska
-
Institute of Laboratory Animal Science, University of Zürich, Zürich, Switzerland.
- Pawel Pelczar
-
FASTERIS SA, Plan-les-Ouates, Switzerland.
- Julien Prados &
- Laurent Farinelli
-
Present address: Neuroscience Center, University Geneva, Geneva, Switzerland.
- Julien Prados
Contributions
K.G. carried out all of the RT-qPCR, behavioral tests, metabolic measurements, and sperm RNA preparation for sequencing libraries and for RNA injection into fertilized oocytes, and part of the sequencing analyses. A.J. performed western blots and cell culture experiments and assisted with metabolic measurements. J.B. carried out the MSUS procedures and produced MSUS mice. J.P. and P.S. performed most RNA sequencing analyses. P.P. carried out the RNA injection experiments. E.M. and L.F. helped design the RNA sequencing analysis. K.G. and I.M.M. designed the study, interpreted the results and wrote the manuscript.
Competing financial interests
The authors declare no competing financial interests.
Corresponding author
Correspondence to:
- Accession codes•
- •
- •
- Supplementary information
Supplementary Figures
Representative bioanalyser electropherograms show fluorescence intensity (fluorescence unit, FU) over time (seconds) during the pulsing of an RNA sample through a separation microchannel. Small RNAs go through the microchannel faster than long RNAs and appear on the left of the x-axis (for instance, 25bp RNAs appear after about 23 seconds, 200bp RNAs after 28 seconds and 2kb RNAs after 44 seconds). GQF-15 in a) corresponds to a control sample and GQF-14 in b) to a MSUS sample (pooled RNA from 5 mice). The profiles indicate that both samples contain short RNAs but no apparent RNAs above 0,5-1kb. They also show no DNA contamination. This was confirmed by Q-bit analyses using a dsDNA HS assay (Life technologies 1, [DNA]<0,1ng/ul). No protein contamination was detectable by Q-bit assay (Life technologies Q33212, [protein]<1pg/ul) and was confirmed by mass spectrometry (MS).
Mapping of 15–44bp sequencing reads to a) the mouse reference genome, b) ribosomal RNAs, c) other non-coding RNAs and repeat regions and d) mitochondrial DNA, with multiple (black) or unique (grey) hits (n=16 mice, pooled in 4 samples). % total reads represents the proportion of reads with a given size mapping to the mouse genome or selected sequences over the total number of same-size reads. (e) Heatmap showing miRNAs (>100 reads) in control libraries which are altered by MSUS in adult sperm (n=3 each pooled from 5 mice). The blue-to-yellow scale is the number of normalized reads of a given sample over the mean normalized reads of all control samples for each miRNA. Bioinformatic analyses were performed twice using two independent methods. Data are mean ± s.e.m.
(a) aligning to the mouse genome, (b) mapping to mature miRNA sequences (allowing for overhanging 5' and 3' nucleotides) and (c) aligning to piRNA clusters. In (a), reads alignment shows peaks at the typical size of miRNAs (21-23bp) and piRNAs (26-31bp). In (b), mapping of 18-35bp reads (not mapping to the transcriptome) to annotated miRNAs shows a sharp peak at 22bp, the typical size of mature miRNAs. In (c), alignment of 18-35bp reads (not mapping to the transcriptome) to genomic regions annotated as piRNAs shows a peak at the typical size of piRNAs, starting with the nucleotide T indicative for piRNA identity. A concatenation of all reads detected in control libraries is shown. The size and first nucleotide are shown by position on the x-axis and color, respectively. The y-axis shows the percentage of reads relative to total reads for the combined libraries.
The y-axis represents the percentage of reads relative to total reads of combined control libraries either a) including an abundant 16bp sequence corresponding to an annotated piRNA sequence or b) excluding this 16bp sequence. Exclusion of this sequence results in a loss of the apparent enrichment of the 16bp peak, suggesting that the peak is not an artefact. A concatenation of all reads detected in control libraries is shown.
C57Bl/6J females (F0, left) were bred to C57Bl/6J males and their pups were subjected to MSUS from postnatal day (PND) 1 to 14 or raised in normal conditions (Control). Males from the F1 offspring were then bred to naïve C57Bl/6J females to obtain second-generation animals (F2) that were raised in normal conditions (no maternal separation or maternal stress). Animals from F1 and F2 generations were tested behaviorally then bred. Illustration: University of Zürich informatics services, MELS, Natasa Milosevic.
Total distance covered by adult (a) F1 (controls n=8, MSUS n=17; t(23)=0.55),(b) F2 (controls n=30, MSUS n=30; t(53)=-1.06) and (c) RNA-injected (controls-RNAinj n=18, MSUS-RNAinj n=19, t(35)=0.18) animals. Data are mean ± s.e.m.
(a-c) Glucose level in blood a) at baseline and during a glucose tolerance test (GTT) after an acute restraint stress in non-fasted F1 mice (control, n=8; MSUS, n=8; F(1,22)=4.26) b) at baseline and during GTT in fasted F1 mice (control, n=8; MSUS, n=8; F(1,14)=0.01) c) at baseline and during an insulin tolerance test (ITT) in fasted F1 mice (control, n=8; MSUS, n=6; F(1,12)=5.38). (d) Body weight (control, n=10; MSUS, n=13; t(21)=1.82) and (e) caloric intake (control, n=4; MSUS, n=6; t(8)=-0.81) in F1 adult animals. Data are mean ± s.e.m. *p<0.05 group effect repeated measures ANOVA and t-test.
(a-b) Glucose level in blood (a) at baseline and during GTT in fasted F2 mice (control, n=8; MSUS, n=8; F(1,14)=4.71) and b) at baseline and during ITT in fasted F2 mice (control, n=7; MSUS, n=6; F(4,44)=3,38; 0 min: t(11)=-2.5, 15 min: t(11)=-0.15, 30 min: t(11)=2.76, 90 min: t(11)=-1.58). (c) Body weight (control, n=13; MSUS, n=11; t(21)=2.09) and (d) caloric intake (control, n=6; MSUS, n=6; t(6.52)=-2.44) in F2 adult animals. Data are mean ± s.e.m, *p<0,05 group effect repeated measures ANOVA and t-test.
(a) Boxplot showing reads aligning to piRNA cluster 110 (on chromosome 13) per 1000 piRNAs reads in control and MSUS samples (negative binomial test p<0.1 after Bonferonni multiple test correction). (b) Log2 of the ratio of MSUS to control reads aligned to piRNA clusters on chromosome 13 showing that cluster 110 (in red) and two neighboring clusters (in black) are down-regulated in MSUS samples.
Level of miRNAs expression in (a) hypothalamus (miR-375-3p: control, n=3; MSUS, n=4; t(5)=1.68; miR-375-5p: control, n=3; MSUS, n=4; t(5)=3.38; miR-200b-3p: control, n=3; MSUS, n=4; t(5)=-0.38; miR-672-5p: control, n=3; MSUS, n=4; t(6)=2.02; miR-466c-5p: control, n=3; MSUS, n=4; t(5)=1.98) and (b) cortex (miR-375-3p: control, n=4; MSUS, n=4; t(6)=0.81; miR-375-5p: control, n=4; MSUS, n=4; t(6)=-0.86; miR-200b-3p: control, n=4; MSUS, n=4; t(6)=-1.17; miR-672-5p: control, n=4; MSUS, n=4; t(6)=0.36; miR-466c-5p: control, n=4; MSUS, n=4; t(6)=0.53) in adult F1 control and MSUS males. Data are mean ± s.e.m, *p<0,05, #p<0,1.
Similar miRNA expression in F3 control and MSUS adult males (miR-375-3p: control, n=9; MSUS, n=9; t(16)=0.7; miR-375-5p: control, n=10; MSUS, n=9; t(17)=0.95; miR-200b-3p: control, n=9; MSUS, n=9; t(16)=0.51; miR-672-5p: control, n=10; MSUS, n=9; t(17)=-0.45; miR-466c-5p: control, n=10; MSUS, n=9; t(17)=0.58). Data are mean ± s.e.m.
(a) Body weight of adult controls-RNAinj (n=8) and MSUS-RNAinj (n=9) animals (t(15)=1.9). (b) Level of miR-375-3p (Controls-RNAinj n=7, MSUS-RNAinj n=8; t(13)=.10) and miR-375-5p (controls-RNAinj n=7, MSUS-RNAinj n=7; t(12)=-2.3) in the adult hippocampus. Data are mean ± s.e.m, *p<0,05, #p<0,1.
Time spent floating on the forced swim test in the offspring of Controls-RNAinj (n=19) and MSUS-RNAinj (n=12) animals (t(29)=-3.369). Data are mean ± s.e.m.
PDF files
Supplementary Figures 1–13 and Supplementary Table 1

